ǂa ǂcase for machine-to-machine communication
Rok Vrabič (Avtor), Dominik Kozjek (Avtor), Peter Butala (Avtor)

Povzetek

In most manufacturing processes the defect rate is very low. Sometimes, only a few parts per million are defective because of a faulty process. For this reason, fault diagnostics is faced with extremely imbalanced data sets and requires large volumes of data to achieve a reasonable performance. This paper explores whether a machine-to-machine approach can be used, in which several work systems share the process data to improve the accuracy of the fault-detection model. The model is based on machine learning and is applied to industrial data from approximately two million process cycles performed on several injection moulding work systems.

Ključne besede

manufacturing system;predictive model;machine-to-machine;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL FS - Fakulteta za strojništvo
UDK: 658.5(045)
COBISS: 15490587 Povezava se bo odprla v novem oknu
ISSN: 0007-8506
Št. ogledov: 1036
Št. prenosov: 429
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Slovenski jezik
Sekundarne ključne besede: proizvodni sistemi;napovedni modeli;komunikacija stroj-stroj;
Konec prepovedi (OpenAIRE): 2020-06-18
Strani: str. 433-436
Letnik: ǂVol. ǂ66
Zvezek: ǂiss. ǂ1
Čas izdaje: 2017
DOI: 10.1016/j.cirp.2017.04.001
ID: 10941837
Priporočena dela:
, ǂa ǂcase for machine-to-machine communication
, ni podatka o podnaslovu
, diplomsko delo Visokošolskega strokovnega študijskega programa I. stopnje Strojništvo