Povzetek

We consider a parametric semilinear Robin problem driven by the Laplacian plus an indefinite and unbounded potential. In the reaction, we have the competing effects of a concave term appearing with a negative sign and of an asymmetric asymptotically linear term which is resonant in the negative direction. Using variational methods together with truncation and perturbation techniques and Morse theory (critical groups), we prove two multiplicity theorems producing four and five, respectively, nontrivial smooth solutions when the parameter ▫$\lambda > 0$▫ is small.

Ključne besede

indefinite and unbounded potential;concave term;asymmetric reaction;critical groups;multiple solutions;Harnack inequality;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL FMF - Fakulteta za matematiko in fiziko
UDK: 517.956.2
COBISS: 18385753 Povezava se bo odprla v novem oknu
ISSN: 1536-1365
Št. ogledov: 530
Št. prenosov: 381
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Vrsta dela (COBISS): Članek v reviji
Strani: str. 69-87
Letnik: ǂVol. ǂ19
Zvezek: ǂiss. ǂ1
Čas izdaje: Feb. 2019
DOI: 10.1515/ans-2018-2022
ID: 11191166