Povzetek

The study of fourth order partial differential equations has flourished in the last years, however, a ▫$p(\cdot)$▫-biharmonic problem with no-flux boundary condition has never been considered before, not even for constant ▫$p$▫. This is an important step further, since surfaces that are impermeable to some contaminants are appearing quite often in nature, hence the significance of such boundary condition. By relying on several variational arguments, we obtain the existence and the multiplicity of weak solutions to our problem. We point out that, although we use a mountain pass type theorem in order to establish the multiplicity result, we do not impose an Ambrosetti-Rabinowitz type condition, nor a symmetry condition, on our nonlinearity ▫$f$▫.

Ključne besede

variable exponent;new variable exponent subspace;▫$p(\cdot)$▫-biharmonic operator;nonlinear elliptic problem;weak solutions;existence;multiplicity;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL FMF - Fakulteta za matematiko in fiziko
UDK: 517.956
COBISS: 17789785 Povezava se bo odprla v novem oknu
ISSN: 0898-1221
Št. ogledov: 481
Št. prenosov: 305
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Vrsta dela (COBISS): Članek v reviji
Strani: str. 2505-2515
Letnik: ǂVol. ǂ72
Zvezek: ǂiss. ǂ9
Čas izdaje: 2016
DOI: http://dx.doi.org/10.1016/j.camwa.2016.09.017
ID: 11232027