Povzetek

The aim of this paper is to show the importance of the Steenrod construction of homology theories for the disassembly process in surgery on a generalized ▫$n$▫-manifold ▫$X^n$▫, in order to produce an element of generalized homology theory, which is basic for calculations. In particular, we show how to construct an element of the ▫$n$▫th Steenrod homology group ▫$H^{st}_n (X^n, \mathbb{L}^+)$▫, where ▫$\mathbb{L}^+$▫ is the connected covering spectrum of the periodic surgery spectrum ▫$\mathbb{L}$▫, avoiding the use of the geometric splitting procedure, the use of which is standard in surgery on topological manifolds.

Ključne besede

Poincaré duality complex;generalized manifold;Steenrod ▫$\mathbb{L}$▫-homology;periodic surgery spectrum ▫$\mathbb{L}$▫;fundamental complex;$\mathbb{L}$-homology class;Quinn index;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL FMF - Fakulteta za matematiko in fiziko
UDK: 515.14
COBISS: 18947417 Povezava se bo odprla v novem oknu
ISSN: 0013-0915
Št. ogledov: 465
Št. prenosov: 242
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Vrsta dela (COBISS): Članek v reviji
Strani: str. 579-607
Letnik: ǂVol. ǂ63
Zvezek: ǂno. ǂ2
Čas izdaje: May 2020
DOI: 10.1017/S0013091520000012
ID: 11758057