magistrsko delo
Anja Jeglič (Avtor), Matija Cencelj (Mentor), Boštjan Gabrovšek (Komentor)

Povzetek

Predstavili smo simediansko točko trikotnika, ki je ena od več tisoč znamenitih točk povezanih s trikotnikom. Na začetku smo definirali izogonalno konjugiranko premice skozi oglišče trikotnika, s pomočjo katere smo nato definirali simediansko točko trikotnika. Pogledali smo si nekaj zanimivih lastnosti simedianske točke trikotnika in v kakšnem odnosu je simedianska točka trikotnika z nekaterimi drugimi značilnimi točkami trikotnika. V nadaljevanju smo predstavili tetraeder in definirali izogonalno konjugiranko ravnine skozi rob tetraedra. S pomočjo tega smo lahko definirali simedianske ravnine katerega koli tetraedra. Na koncu smo predstavili dokaz, da se vseh šest simedianskih ravnin tetraedra seka v skupni točki in da se ta točka imenuje simedianska točka tetraedra.

Ključne besede

trikotnik;izogonalna konjugiranost;simedianska točka;tetraeder;diedrski kot;simedianska ravnina;

Podatki

Jezik: Slovenski jezik
Leto izida:
Tipologija: 2.09 - Magistrsko delo
Organizacija: UL PEF - Pedagoška fakulteta
Založnik: [A. Jeglič]
UDK: 514(043.2)
COBISS: 22456323 Povezava se bo odprla v novem oknu
Št. ogledov: 393
Št. prenosov: 44
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Angleški jezik
Sekundarni naslov: Symmedian point of a triangle and a tetrahedron
Sekundarni povzetek: We present the symmedian point of a triangle which is one of several thousand particular points associated to a triangle. First the isogonal conjugate of a line through a vertex of the triangle is defined in order to define the symmedian point. We take a closer look at some of the interesting properties of the symmedian point of a triangle and the relationship of the symmedian point with some other particular points of the triangle. Next we consider a tetrahedron and define the isogonal conjugate of a plane through a side of the tetrahedron. This enables us to define the symmedian planes of any tetrahedron. A proof that all six symmedian planes of a tetrahedron intersect in a common point is presented and this point is called the symmedian point of the tetrahedron.
Sekundarne ključne besede: mathematics;geometry;matematika;geometrija;
Vrsta datoteke: application/pdf
Vrsta dela (COBISS): Magistrsko delo/naloga
Komentar na gradivo: Univ. v Ljubljani, Pedagoška fak, Poučevanje, Predmetno poučevanje
Strani: 52 str.
ID: 11899670
Priporočena dela:
, ni podatka o podnaslovu
, delo diplomskega seminarja