undergraduate thesis
Maša Kljun (Avtor), Erik Štrumbelj (Mentor)

Povzetek

In this thesis we review 12 time series similarity measures and 3 classifications of these measures into groups. We view similarity measures in terms of time complexity, support of time series of different lengths, and normalization. With empirical evaluation we check measures' invariances to warping and scaling, their clustering performance, and how similar they are. We find out that although several measures perform well on average no measure performs well in all cases. We see that the Piccolo distance is invariant to warping and scaling, and that it stands out with its clustering performance and linear time complexity. We also see that compression-based measures perform poorly on average.

Ključne besede

time series;similarity measures;classification of similarity measures;clustering;computer science;computer and information science;computer science and mathematics;interdisciplinary studies;diploma;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 2.11 - Diplomsko delo
Organizacija: UL FRI - Fakulteta za računalništvo in informatiko
Založnik: [M. Kljun]
UDK: 004(043.2)
COBISS: 28472067 Povezava se bo odprla v novem oknu
Št. ogledov: 850
Št. prenosov: 229
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Slovenski jezik
Sekundarni naslov: Merjenje podobnosti univariatnih časovnih vrst
Sekundarni povzetek: V diplomskem delu obravnavamo 12 mer podobnosti za časovne vrste in 3 delitve le-teh v skupine. Mere podobnosti obravnavamo z vidika njihovih časovnih zahtevnosti ter drugih lastnosti, kot so sposobnost primerjave časovnih vrst različnih dolžin in normalizacija razdalje. Empirično preverimo invariantnost mer na ukrivljanje in množenje s skalarjem, njihovo uspešnost pri gručenju in kako podobne so si. Ugotovimo, da nobena mera ni ustrezna v vseh primerih, saj ima vsaka svoje pomanjkljivosti. Vidimo, da je razdalja Piccolo invariantna na ukrivljanje in množenje s skalarjem ter da izstopa s svojo linearno časovno zahtevnostjo in dobrim rezultatom pri gručenju. Vidimo tudi, da mere, ki temeljijo na kompresiji, v povprečju ne dajejo dobrih rezultatov.
Sekundarne ključne besede: časovne vrste;mere podobnosti;klasifikacija mer podobnosti;gručenje;računalništvo;računalništvo in informatika;računalništvo in matematika;interdisciplinarni študij;univerzitetni študij;diplomske naloge;
Vrsta dela (COBISS): Diplomsko delo/naloga
Študijski program: 1000407
Konec prepovedi (OpenAIRE): 1970-01-01
Komentar na gradivo: Univ. v Ljubljani, Fak. za računalništvo in informatiko
Strani: 42 str.
ID: 12027632
Priporočena dela:
, zbirnik za spletne brskalnike