Ana Flack (Avtor), Bruno Bertini (Avtor), Tomaž Prosen (Avtor)

Povzetek

We compute the full probability distribution of the spectral form factor in the self-dual kicked Ising model by providing an exact lower bound for each moment and verifying numerically that the latter is saturated. We show that at long enough times the probability distribution agrees exactly with the prediction of random-matrix theory if one identifies the appropriate ensemble of random matrices. We find that this ensemble is not the circular orthogonal one—composed of symmetric random unitary matrices and associated with time-reversal-invariant evolution operators—but is an ensemble of random matrices on a more restricted symmetric space [depending on the parity of the number of sites this space is either S p(N)/U (N) or O(2N)/O(N)×O(N)]. Even if the latter ensembles yield the same averaged spectral form factor as the circular orthogonal ensemble, they show substantially enhanced fluctuations. This behavior is due to a recently identified additional antiunitary symmetry of the self-dual kicked Ising model.

Ključne besede

statističma fizika;kvantni kaos;statistical physics;quantum chaos;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL FMF - Fakulteta za matematiko in fiziko
UDK: 536
COBISS: 49281539 Povezava se bo odprla v novem oknu
ISSN: 2643-1564
Št. ogledov: 269
Št. prenosov: 149
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Slovenski jezik
Sekundarne ključne besede: statističma fizika;kvantni kaos;
Strani: str. 043403-1-043403-14
Letnik: ǂVol. ǂ2
Zvezek: ǂiss. ǂ4
Čas izdaje: 2020
DOI: 10.1103/PhysRevResearch.2.043403
ID: 12512672