Povzetek
 
We study quantum chaos and spectral correlations in periodically driven (Floquet) fermionic chains with long-range two-particle interactions, in the presence and absence of particle-number conservation $[U(1)]$ symmetry. We analytically show that the spectral form factor precisely follows the prediction of random matrix theory in the regime of long chains, and for timescales that exceed the so-called Thouless time which scales with the size $L$ as $\mathcal{O}(L^2)$, or $\mathcal{O}(L^0)$, in the presence, or absence, of $U(1)$ symmetry, respectively. Using a random phase assumption which essentially requires a long-range nature of the interaction, we demonstrate that the Thouless time scaling is equivalent to the behavior of the spectral gap of a classical Markov chain, which is in the continuous-time (Trotter) limit generated, respectively, by a gapless $XXX$, or gapped $XXZ$, spin-1/2 chain Hamiltonian.
    Ključne besede
 
statistična fizika;nelinearna dinamika;kvantni kaos;statistical physics;nonlinear dynamics;quantum chaos;
    Podatki
 
    
        
            | Jezik: | Angleški jezik | 
        
        
            | Leto izida: | 2020 | 
            
        
        
            | Tipologija: | 1.01 - Izvirni znanstveni članek | 
            
        
            | Organizacija: | UL FMF - Fakulteta za matematiko in fiziko | 
        
            | UDK: | 536.93 | 
   
        
        
            | COBISS: | 76257539   | 
        
        
            | ISSN: | 2470-0045 | 
        
  
        
            | Št. ogledov: | 235 | 
        
        
            | Št. prenosov: | 94 | 
        
        
            | Ocena: | 0 (0 glasov) | 
        
            | Metapodatki: |                       | 
    
    
    Ostali podatki
 
    
        
            | Sekundarni jezik: | Slovenski jezik | 
        
        
        
        
        
            | Sekundarne ključne besede: | statistična fizika;nelinearna dinamika;kvantni kaos; | 
        
            
        
        
           
        
           
        
           
        
           
        
           
        
           
        
           
        
            | Strani: | str. 060202-1-060202-5 | 
        
           
        
            | Letnik: | ǂVol. ǂ102 | 
        
           
        
            | Zvezek: | ǂiss. ǂ6 | 
        
           
        
            | Čas izdaje: | 2020 | 
        
           
        
           
        
           
        
            | DOI: | 10.1103/PhysRevE.102.060202 | 
        
           
        
           
        
          
        
          
        
          
        
         
        
         
        
        
            | ID: | 13403689 |