Miha Srdinšek (Avtor), Tomaž Prosen (Avtor), Spyros Sotiriadis (Avtor)

Povzetek

We study signatures of quantum chaos in $(1+1)D$ quantum field theory (QFT) models. Our analysis is based on the method of Hamiltonian truncation, a numerical approach for the construction of low-energy spectra and eigenstates of QFTs that can be considered as perturbations of exactly solvable models. We focus on the double sine-Gordon, also studying the massive sine-Gordon and $\phi^4$ model, all of which are nonintegrable and can be studied by this method with sufficiently high precision from small to intermediate perturbation strength. We analyze the statistics of level spacings and of eigenvector components, which are expected to follow random matrix theory predictions. While level spacing statistics are close to the Gaussian orthogonal ensemble (GOE) as expected, on the contrary, the eigenvector components follow a distribution markedly different from the expected Gaussian. Unlike in the typical quantum chaos scenario, the transition of level spacing statistics to chaotic behavior takes place already in the perturbative regime. Moreover, the distribution of eigenvector components does not appear to change or approach Gaussian behavior, even for relatively large perturbations. Our results suggest that these features are independent of the choice of model and basis.

Ključne besede

kvantna mehanika;kvantni kaos;kvantna teorija polja;quantum mechanics;quantum chaos;quantum field theory;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL FMF - Fakulteta za matematiko in fiziko
UDK: 530.145
COBISS: 62651139 Povezava se bo odprla v novem oknu
ISSN: 0031-9007
Št. ogledov: 327
Št. prenosov: 173
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Slovenski jezik
Sekundarne ključne besede: kvantna mehanika;kvantni kaos;kvantna teorija polja;
Vrsta dela (COBISS): Članek v reviji
Strani: str. 121602-1-121602-6
Letnik: ǂVol. ǂ126
Zvezek: ǂiss. ǂ12
Čas izdaje: 2021
DOI: 10.1103/PhysRevLett.126.121602
ID: 12887514