Ahmed Aberqi (Avtor), Omar Benslimane (Avtor), Abdesslam Ouaziz (Avtor), Dušan Repovš (Avtor)

Povzetek

We present the theory of a new fractional Sobolev space in complete manifolds with variable exponent. As a result, we investigate some of our new space’s qualitative properties, such as completeness, reflexivity, separability, and density. We also show that continuous and compact embedding results are valid. We apply the conclusions of this study to the variational analysis of a class of fractional ▫$p(z, \cdot)$▫-Laplacian problems involving potentials with vanishing behavior at infinity as an application.

Ključne besede

fractional ▫$p(z, \cdot)$▫-Laplacian;existence of solutions;fractional Sobolev space with variable exponent on complete manifolds;variational method;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL FMF - Fakulteta za matematiko in fiziko
UDK: 517.956
COBISS: 96892419 Povezava se bo odprla v novem oknu
ISSN: 1687-2770
Št. ogledov: 336
Št. prenosov: 87
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Vrsta dela (COBISS): Članek v reviji
Strani: art. 7 (20 str.)
Zvezek: ǂVol. ǂ2022
Čas izdaje: 2022
DOI: 10.1186/s13661-022-01590-5
ID: 14673450