Vincenzo De Filippis (Avtor), Ajda Fošner (Avtor), Feng Wei (Avtor)

Povzetek

V članku je obravnavana posebna identiteta na Liejevem idealu prakolobarja, ki vklučuje posplošeno ▫$\alpha$▫-odvajanje.

Ključne besede

matematika;algebra;polinomska identiteta;prakolobar;posplošeno ▫$\alpha▫-odvajanje;mathematics;polynomial identity;generalized skew derivation;prime ring;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UP - Univerza na Primorskem
UDK: 512.552
COBISS: 16653657 Povezava se bo odprla v novem oknu
ISSN: 1386-923X
Št. ogledov: 3853
Št. prenosov: 144
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Slovenski jezik
Sekundarni naslov: Identitete s posplošenimi [alpha]-odvajanji na Lijevih idealih
Sekundarni povzetek: Let ▫$m, n$▫ be two nonzero fixed positive integers, ▫$R$▫ a 2-torsion free prime ring with the right Martindale quotient ring ▫$Q$▫, ▫$L$▫ a non-central Lie ideal of ▫$R$▫, and ▫$\delta$▫ a derivation of ▫$R$▫. Suppose that ▫$\alpha$▫ is an automorphism of ▫$R$▫, ▫$D$▫ a skew derivation of ▫$R$▫ with the associated automorphism ▫$\alpha$▫, and ▫$F$▫ a generalized skew derivation of ▫$R$▫ with the associated skew derivation ▫$D$▫. If ▫$$F(x^{m+n}) = F(x^m)x^n + x^m \delta (x^n)$$▫ is a polynomial identity for ▫$L$▫, then either ▫$R$▫ satisfies the standard polynomial identity ▫$s_4(x_1, x_2, x_3, x_4)$▫ of degree 4, or ▫$F$▫ is a generalized derivation of ▫$R$▫ and ▫$\delta = D$▫. Furthermore, in the latter case one of the following statements holds: (1) ▫$D = \delta = 0$▫ and there exists ▫$a \in Q$▫ such that ▫$F(x) = ax$▫ for all ▫$x \in R$▫; (2) ▫$\alpha$▫ is the identical mapping of ▫$R$▫.
Sekundarne ključne besede: matematika;algebra;polinomska identiteta;prakolobar;posplošeno ▫$\alpha▫-odvajanje;
Vrsta dela (COBISS): Delo ni kategorizirano
Strani: str. 1017-1038
Letnik: ǂVol. ǂ16
Zvezek: ǂiss. ǂ4
Čas izdaje: 2013
ID: 1476884
Priporočena dela:
, ni podatka o podnaslovu
, ni podatka o podnaslovu