diplomsko delo
Povzetek
Eden izmed problemov upravljanja z infrastrukturo je pregledovanje njene kakovosti, ki preverja stanje infrastrukture kot so cestišča, mostovi in podobni objekti. Razpoke so zelo zgodnji indikator morebitnega slabšanja stanja infrastrukture objektov, kar je lahko nevarno za uporabnike. Hitra in natančna detekcija razpok lahko bistveno zmanjša stroške vzdrževanja in izboljša učinkovitost. V diplomski nalogi je predstavljena rešitev tega problema z nadzorovanim globokim učenjem za segmentacijo razpok v betonu. Predstavljeni so tudi dodatki k rešitvi, ki znatno pripomorejo k izboljšanju učinkovitosti in zmogljivosti modela. Rešitev je ovrednotena na več različnih slikovnih množicah ter primerjana s sorodnimi pristopi.
Ključne besede
nevronske mreže;segmentacija;klasifikacija;razpoke v betonu;visokošolski strokovni študij;diplomske naloge;
Podatki
Jezik: |
Slovenski jezik |
Leto izida: |
2022 |
Tipologija: |
2.11 - Diplomsko delo |
Organizacija: |
UL FRI - Fakulteta za računalništvo in informatiko |
Založnik: |
[M. Šuc] |
UDK: |
004.8:625.821.5(043.2) |
COBISS: |
121455363
|
Št. ogledov: |
39 |
Št. prenosov: |
16 |
Ocena: |
0 (0 glasov) |
Metapodatki: |
|
Ostali podatki
Sekundarni jezik: |
Angleški jezik |
Sekundarni naslov: |
Supervised deep learning for concrete crack segmentation |
Sekundarni povzetek: |
One of the problems of infrastructure maintenance is the review of its quality, which controls the state of infrastructure, such as roads, bridges and similar objects. Cracks are a very early indicator of the possible deterioration of infrastructure objects, which can be dangerous for users. Fast and accurate detection of these cracks can reduce maintenance costs and improve efficiency. The diploma thesis presents a solution to this problem by applying supervised deep learning for detection of cracks on concrete surfaces. Additions to the solution are also presented, which significantly help to improve the efficiency and performance of the model. The solution was tested on several different image datasets and compared to related approaches. |
Sekundarne ključne besede: |
neural networks;segmentation;classification;computer vision;deep learning;concrete cracks;computer science;diploma;Globoko učenje (strojno učenje);Računalniški vid;Beton;Računalništvo;Univerzitetna in visokošolska dela; |
Vrsta dela (COBISS): |
Diplomsko delo/naloga |
Študijski program: |
1000470 |
Konec prepovedi (OpenAIRE): |
1970-01-01 |
Komentar na gradivo: |
Univ. v Ljubljani, Fak. za računalništvo in informatiko |
Strani: |
51 str. |
ID: |
16391441 |