Dušan Repovš (Avtor), Mikhail Zaicev (Avtor)

Povzetek

We study polynomial identities of algebras with involution of nonassociative algebras over a field of characteristic zero. We prove that the growth of the sequence of *-codimensions of a finite-dimensional algebra is exponentially bounded. We construct a series of finite-dimensional algebras with fractional -PI-exponent. We also construct a family of infinite-dimensional algebras ▫$C_\alpha* $▫ such that ▫$\exp^\ast (C_\alpha)$▫ does not exist.

Ključne besede

polynomial identity;nonassociative algebra;involution;exponential growth;exponentially bounded *-codimension;fractional *-PI-exponent;Amitsur's conjecture;numerical invariant;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL FMF - Fakulteta za matematiko in fiziko
UDK: 512.554.3
COBISS: 126194179 Povezava se bo odprla v novem oknu
ISSN: 0021-8693
Št. ogledov: 150
Št. prenosov: 56
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Vrsta dela (COBISS): Članek v reviji
Strani: str. 5-19
Zvezek: ǂVol. ǂ614
Čas izdaje: Jan. 2023
DOI: 10.1016/j.jalgebra.2022.09.013
ID: 16812125