[bachelor's] thesis
Enio Kurbegović (Avtor), Zoran Bosnić (Mentor), Aleš Papič (Komentor)

Povzetek

In this thesis, we implement a neural style transfer model, which uses so-called “meta networks” to train image transformation networks. A trained image transformation network takes in two images - a content and a style image, and generates a new image, combining the content from the first with the style from the second image. We take an already existing model and train it on our own style dataset, as well as reduce the size of the content dataset, in order to see how to perform style transfer on a smaller amount of training data. Finally, we create a website, which allows users to generate their own stylized images using our trained models. At the end of the project we can say that meta networks have proven to be very efficient for operations with smaller datasets and they produce satisfactory results.

Ključne besede

artificial intelligence;neural networks;neural style transfer;meta networks;image transformation networks;content images;style images;computer and information science;diploma thesis;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 2.11 - Diplomsko delo
Organizacija: UL FRI - Fakulteta za računalništvo in informatiko
Založnik: [E. Kurbegović]
UDK: 004.8:7(043.2)
COBISS: 178678787 Povezava se bo odprla v novem oknu
Št. ogledov: 26
Št. prenosov: 5
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Slovenski jezik
Sekundarni naslov: Prenos sloga umetniških del z uporabo nevronskih omrežij
Sekundarni povzetek: V tem članku smo implementirali model za nevronski prenos sloga, ki uporablja tako imenovana “meta omrežja” za ustvarjanje omrežij za preoblikovanje slik. Usposobljeno omrežje za preoblikovanje slik sprejme dve sliki - vsebinsko in stilsko sliko - ter ustvari novo sliko, pri čemer združi vsebino s prve slike s slogom iz druge slike. Že obstoječi model učimo na lastni bazi podatkov stilskih slik in zmanjšamo velikost baze podatkov vsebinskih slik, da bi videli, kako narediti prenos sloga na manjši količini podatkov za učenje. Ustvarili smo spletno stran, ki uporabnikom omogoča, da ustvarijo lastne stilizirane slike z uporabo naših usposobljenih modelov. Ob zaključku lahko rečemo, da so se meta omrežja izkazala za učinkovita z manjšimi nabori podatkov in dajejo zadovoljive rezultate.
Sekundarne ključne besede: nevronski prenos sloga;meta mreže;mreže za preoblikovanje slik;vsebinske slike;slogovne slike;univerzitetni študij;diplomske naloge;Umetna inteligenca;Nevronske mreže (računalništvo);Slike;Računalništvo;Univerzitetna in visokošolska dela;
Vrsta dela (COBISS): Diplomsko delo/naloga
Študijski program: 1000468
Konec prepovedi (OpenAIRE): 1970-01-01
Komentar na gradivo: Univ. v Ljubljani, Fak. za računalništvo in informatiko
Strani: 58 str.
ID: 21708460