R. Świętek (Avtor), M. Kliczkowski (Avtor), Lev Vidmar (Avtor), Marcos Rigol (Avtor)

Povzetek

We study the average and the standard deviation of the entanglement entropy of highly excited eigenstates of the integrable interacting spin-$\frac{1}{2} XYZ$ chain away from and at special lines with $U(1)$ symmetry and supersymmetry. We universally find that the average eigenstate entanglement entropy exhibits a volume-law coefficient that is smaller than that of quantum-chaotic interacting models. At the supersymmetric point, we resolve the effect that degeneracies have on the computed averages. We further find that the normalized standard deviation of the eigenstate entanglement entropy decays polynomially with increasing system size, which we contrast with the exponential decay in quantum-chaotic interacting models. Our results provide state-of-the art numerical evidence that integrability in spin-$\frac{1}{2}$ chains reduces the average and increases the standard deviation of the entanglement entropy of highly excited energy eigenstates when compared with those in quantum-chaotic interacting models.

Ključne besede

statistična fizika;statistical physics;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL FMF - Fakulteta za matematiko in fiziko
UDK: 536.9
COBISS: 193905923 Povezava se bo odprla v novem oknu
ISSN: 2470-0045
Št. ogledov: 32
Št. prenosov: 7
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Slovenski jezik
Sekundarne ključne besede: statistična fizika;
Vrsta dela (COBISS): Članek v reviji
Strani: str. 024117-1-024117-9
Letnik: ǂVol. ǂ109
Zvezek: ǂiss. ǂ2
Čas izdaje: 2024
DOI: 10.1103/PhysRevE.109.024117
ID: 23530192