towards understanding the embedding space of convolutional networks through visual reconstruction of deep face templates

Povzetek

Advances in deep learning and convolutional neural networks (ConvNets) have driven remarkable face recognition (FR) progress recently. However, the black-box nature of modern ConvNet-based face recognition models makes it challenging to interpret their decision-making process, to understand the reasoning behind specific success and failure cases, or to predict their responses to unseen data characteristics. It is, therefore, critical to design mechanisms that explain the inner workings of contemporary FR models and offer insight into their behavior. To address this challenge, we present in this paper a novel template-inversion approach capable of reconstructing high-fidelity face images from the embeddings (templates, feature-space representations) produced by modern FR techniques. Our approach is based on a novel Deep Face Decoder (DFD) trained in a regression setting to visualize the information encoded in the embedding space with the goal of fostering explainability. We utilize the developed DFD model in comprehensive experiments on multiple unconstrained face datasets, namely Visual Geometry Group Face dataset 2 (VGGFace2), Labeled Faces in the Wild (LFW), and Celebrity Faces Attributes Dataset High Quality (CelebA-HQ). Our analysis focuses on the embedding spaces of two distinct face recognition models with backbones based on the Visual Geometry Group 16-layer model (VGG-16) and the 50-layer Residual Network (ResNet-50). The results reveal how information is encoded in the two considered models and how perturbations in image appearance due to rotations, translations, scaling, occlusion, or adversarial attacks, are propagated into the embedding space. Our study offers researchers a deeper comprehension of the underlying mechanisms of ConvNet-based FR models, ultimately promoting advancements in model design and explainability.

Ključne besede

globoke obrazne predloge;inverzija predlog;prepoznavanje obrazov;globoko učenje;razložljivost;interpretabilnost;deep face templates;template inversion;face recognition;deep learning;explainability;interpretability;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL FE - Fakulteta za elektrotehniko
UDK: 004.93
COBISS: 184095491 Povezava se bo odprla v novem oknu
ISSN: 1873-6769
Št. ogledov: 40
Št. prenosov: 5
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Slovenski jezik
Sekundarne ključne besede: globoke obrazne predloge;inverzija predlog;prepoznavanje obrazov;globoko učenje;razložljivost;interpretabilnost;
Vrsta dela (COBISS): Članek v reviji
Strani: str. 1-20
Zvezek: ǂVol. ǂ132, [article no.] 107941
Čas izdaje: Jun. 2024
DOI: 10.1016/j.engappai.2024.107941
ID: 23674464
Priporočena dela:
, towards understanding the embedding space of convolutional networks through visual reconstruction of deep face templates