diplomsko delo
Goran Gligorin (Avtor), Igor Kononenko (Mentor)

Povzetek

Pregled in primerjava sistemov za priporočanje

Ključne besede

sistem za priporočanje;izbiranje s sodelovanjem;k-najbližjih sosedov;faktorizacija matrike;računalništvo;univerzitetni študij;diplomske naloge;

Podatki

Jezik: Slovenski jezik
Leto izida:
Tipologija: 2.11 - Diplomsko delo
Organizacija: UL FRI - Fakulteta za računalništvo in informatiko
Založnik: [G. Gligorin]
UDK: 004(043.2)
COBISS: 8693588 Povezava se bo odprla v novem oknu
Št. ogledov: 29
Št. prenosov: 1
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Angleški jezik
Sekundarni naslov: Overview and comparison of recommender systems
Sekundarni povzetek: The field of recommender systems is most commonly classified into three main categories: content--based, collaborative filtering and hybrid recommendation algorithms which combine the features from the first two categories. The goal of the thesis was the implementation of two algorithms from the collaborative category, today the most commonly used basis for recommender systems, and their evaluation. Collaborative filtering is further divided into two groups: memory--based and model--based methods. From implementation we chose one algorithm form each group. We chose a neighborhood--based method and a method based on matrix factorization to represent each of the groups respectively. We implemented an extra method that combines the properties of the first two. The results of testing showed that building a recommender system that performs better then naive methods. The analysis showed that the main reasons lie in data sparsity problem, which is one of the main problems collaborative filtering methods face. As expected matrix factorization, which is designed to handle this problem, produced better results than other methods. In the conclusion we present some ideas for further work, which include estimate calibration and excluding unrepresentative artists.
Sekundarne ključne besede: recommender system;collaborative filtering;k-nearest neighbors;matrix factorization;computer science;diploma;
Vrsta datoteke: application/pdf
Vrsta dela (COBISS): Diplomsko delo
Komentar na gradivo: Univ. v Ljubljani, Fak. za računalništvo in informatiko
Strani: 53 str.
ID: 24093589
Priporočena dela:
, diplomsko delo
, s Pythonom do prvega klasifikatorja