diplomsko delo
Povzetek
Razumevanje parlamentarnega govora in širših političnih razprav je ključno za razumevanje političnih procesov in odločitev, ki vplivajo na družbo. Naloga obravnava problem strojne identifikacije in analize stališč poslancev in strank do različnih tematik s trirazredno klasifikacijo: ''za'', "proti", in "nevtralno". Analiza zajema primerjave stališč v srbskem parlamentu. Za analizo smo uporabili nabor ročno označenih podatkov, ki vsebuje 1019 učnih primerov. Ovrednotili smo več jezikovnih modelov, kot so XML-RoBERTa, BERTić, POLITICS, YugoGPT in Llama-3.1, ter primerjali njihove rezultate. Analiza potrjuje splošno znanje o političnih strankah in njihovih usmeritvah ter prikazujejo zmogljivost velikih jezikovnih modelov za analizo velikih zbirk besedil.
Ključne besede
prepoznavanje stališč;veliki jezikovni modeli;parlamentarni govor;univerzitetni študij;diplomske naloge;
Podatki
Jezik: |
Slovenski jezik |
Leto izida: |
2024 |
Tipologija: |
2.11 - Diplomsko delo |
Organizacija: |
UL FRI - Fakulteta za računalništvo in informatiko |
Založnik: |
[A. Rajović] |
UDK: |
004.85:81'322(043.2) |
COBISS: |
212592131
|
Št. ogledov: |
143 |
Št. prenosov: |
42 |
Ocena: |
0 (0 glasov) |
Metapodatki: |
|
Ostali podatki
Sekundarni jezik: |
Angleški jezik |
Sekundarni naslov: |
Stance detection in Serbian parliamentary speech |
Sekundarni povzetek: |
Understanding parliamentary discourse and broader political debates is essential for comprehending the political processes and decisions that impact society. The thesis addresses the challenge of machine learning-based identification and analysis of the stances of parliament members and their parties on various topics using a three-class classification: 'for,' 'against,' and 'neutral.' The analysis includes comparisons of stances in the Serbian parliament. We utilized a manually annotated dataset containing 1,019 examples for the analysis. We evaluated several language models, such as XML-RoBERTa, BERTić, POLITICS, YugoGPT, and Llama-3.1, and compared their performance. Our findings confirm the general knowledge of political parties and their orientations, demonstrating the capability of large language models to analyze large datasets. |
Sekundarne ključne besede: |
stance detection;large language models;parliament speech;computer and information science;diploma;Računalniško jezikoslovje;Politično govorništvo;Računalništvo;Univerzitetna in visokošolska dela; |
Vrsta dela (COBISS): |
Diplomsko delo/naloga |
Študijski program: |
1000468 |
Konec prepovedi (OpenAIRE): |
1970-01-01 |
Komentar na gradivo: |
Univ. v Ljubljani, Fak. za računalništvo in informatiko |
Strani: |
1 spletni vir (1 datoteka PDF (57 str.)) |
ID: |
25001832 |