delo diplomskega seminarja

Povzetek

V diplomskem delu obravnavamo Henstock-Kurzweilov integral. Njegova definicija je podobna Riemannovi, le da finost delitev intervalov določa funkcija $\delta$ in ne več konstanta. Ta razlika omogoči integriranje mnogo splošnejših funkcij. Leibnizova formula omogoči integracijo funkcij, ki na zaprtem intervalu niso nujno povsod definirane. Sledi uvedba izlimitiranih integralov, ki sploh ne razširijo množice integrabilnih funkcij. Kot glavni izsledek navedemo izrek o monotoni konvergenci, ki poda zelo obvladljivo karakterizacijo funkcijskih zaporedij, za katera lahko zamenjamo vrstni red limite in integracije.

Ključne besede

Riemannov integral;Henstock-Kurzweilov integral;Leibnizova formula;izlimitirani integral;izrek o monotoni konvergenci;

Podatki

Jezik: Slovenski jezik
Leto izida:
Tipologija: 2.11 - Diplomsko delo
Organizacija: UL FMF - Fakulteta za matematiko in fiziko
Založnik: [M. Jerič]
UDK: 517
COBISS: 207995139 Povezava se bo odprla v novem oknu
Št. ogledov: 44
Št. prenosov: 12
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Angleški jezik
Sekundarni naslov: Henstock-Kurzweil integral
Sekundarni povzetek: In this thesis we look at the Henstock-Kurzweil integral. Its definition is similar to Riemann’s, except that the fineness of the partition of intervals is determined by a function $\delta$ and no longer by a constant. This difference allows one to integrate much more general functions. Leibniz’s formula allows the integration of functions which are not necessarily defined everywhere on a closed interval. This is followed by the introduction of improper integrals, which do not extend the set of integrable functions at all. The main result is the monotone convergence theorem, which gives a very manageable characterisation of function sequences for which the order of limit and integration can be reversed.
Sekundarne ključne besede: Riemann integral;Henstock-Kurzweil integral;Leibniz formula;improper integral;monotone convergence theorem;
Vrsta dela (COBISS): Delo diplomskega seminarja/zaključno seminarsko delo/naloga
Študijski program: 0
Konec prepovedi (OpenAIRE): 1970-01-01
Komentar na gradivo: Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za matematiko, Matematika - 1. stopnja
Strani: 37 str.
ID: 25050668
Priporočena dela:
, delo diplomskega seminarja
, diplomsko delo
, diplomsko delo