Kristijan Šket (Avtor), Mirko Ficko (Avtor), Nenad Gubeljak (Avtor), Miran Brezočnik (Avtor)

Povzetek

In our study, we explored the complexities of overhead transmission line (OTL) engineering, specifically focusing on their responses to varying atmospheric conditions (ambient temperature, ambient humidity, solar irradiance, ambient pressure, wind speed, wind direction), and electric current usage. Our goal was to comprehend how these independent variables impact critical responses (dependent variables) such as conductor temperature, conductor sag, tower leg stress, and vibrations – parameters crucial for electric distribution. We modelled the target output variable as a polynomial of a certain degree of the input variables. The precise forms of the polynomial were determined using the genetic algorithms (GA). Developed models are essential for quantifying the influence of each input parameter, enriching our understanding of essential system elements. They provide long-term predictions for assessing transmission line lifespan and structural stability, with particularly high precision in forecasting temperature and sag angle. It is important to note that certain engineering parameters, such as material properties and load considerations, were not included in our research, potentially influencing accuracy.

Ključne besede

daljnovodi;strojno učenje;modeliranje;optimizacija;genetski algoritmi;Overhead Transmission Lines (OTL);machine learning;modelling;optimization;genetic algorithms (GA);

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UM FS - Fakulteta za strojništvo
Založnik: DAAAM International Vienna
UDK: 621.384.658
COBISS: 174719235 Povezava se bo odprla v novem oknu
ISSN: 1726-4529
Št. ogledov: 0
Št. prenosov: 0
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Slovenski jezik
Sekundarne ključne besede: daljnovodi;strojno učenje;modeliranje;optimizacija;genetski algoritmi;
Vrsta dela (COBISS): Članek v reviji
Strani: str. 610-618
Letnik: ǂVol. ǂ22
Zvezek: ǂno. ǂ4
Čas izdaje: Dec. 2023
DOI: 10.2507/IJSIMM22-4-661
ID: 26039366