Povzetek

Having spectral correlations that, over small enough energy scales, are described by random matrix theory is regarded as the most general defining feature of quantum chaotic systems as it applies in the many-body setting and away from any semiclassical limit. Although this property is extremely difficult to prove analytically for generic many-body systems, a rigorous proof has been achieved for dual-unitary circuits—a special class of local quantum circuits that remain unitary upon swapping space and time. Here we consider the fate of this property when moving from dual-unitary to generic quantum circuits focusing on the spectral form factor, i.e., the Fourier transform of the two-point correlation. We begin with a numerical survey that, in agreement with previous studies, suggests that there exists a finite region in parameter space where dual-unitary physics is stable and spectral correlations are still described by random matrix theory, although up to a maximal quasienergy scale. To explain these findings, we develop a perturbative expansion: it recovers the random matrix theory predictions, provided the terms occurring in perturbation theory obey a relatively simple set of assumptions. We then provide numerical evidence and a heuristic analytical argument supporting these assumptions.

Ključne besede

kvantni kaos;kvantni večdelčni sistemi;kvantna fizika;statistična fizika;quantum chaos;quantum many-body systems;quantum physics;statistical physics;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL FMF - Fakulteta za matematiko in fiziko
UDK: 530.145
COBISS: 231006723 Povezava se bo odprla v novem oknu
ISSN: 2643-1564
Št. ogledov: 103
Št. prenosov: 51
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Slovenski jezik
Sekundarne ključne besede: kvantni kaos;kvantni večdelčni sistemi;kvantna fizika;statistična fizika;
Vrsta dela (COBISS): Članek v reviji
Strani: str. 033226-1-033226-21
Letnik: ǂVol. ǂ6
Zvezek: ǂiss. ǂ3
Čas izdaje: 2024
DOI: 10.1103/PhysRevResearch.6.033226
ID: 26149446