| Jezik: | Slovenski jezik |
|---|---|
| Leto izida: | 2025 |
| Tipologija: | 2.11 - Diplomsko delo |
| Organizacija: | UL FMF - Fakulteta za matematiko in fiziko |
| Založnik: | [R. Lindič] |
| UDK: | 004.8 |
| COBISS: |
242139907
|
| Št. ogledov: | 102 |
| Št. prenosov: | 33 |
| Ocena: | 0 (0 glasov) |
| Metapodatki: |
|
| Sekundarni jezik: | Angleški jezik |
|---|---|
| Sekundarni naslov: | Homogenous parallel ensemble methods: random forest |
| Sekundarni povzetek: | In machine learning, ensembles of prediction models are used in order to reduce the error that would occur if only one model was used. A commonly used ensemble method is the random forest. The thesis will describe how the random forest functions and what its advantages are compared to decision trees. The end of the thesis will focus on the impact that the diversity of the underlying models in the ensembles has on their prediction error. |
| Sekundarne ključne besede: | machine learning;decision trees;ensembles;homogenous ensembles;random forest;bias-variance decomposition; |
| Vrsta dela (COBISS): | Delo diplomskega seminarja/zaključno seminarsko delo/naloga |
| Študijski program: | 0 |
| Komentar na gradivo: | Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za matematiko, Finančna matematika - 1. stopnja |
| Strani: | 29 str. |
| ID: | 26796063 |