Jezik: | Slovenski jezik |
---|---|
Leto izida: | 2014 |
Tipologija: | 2.11 - Diplomsko delo |
Organizacija: | UM FERI - Fakulteta za elektrotehniko, računalništvo in informatiko |
Založnik: | [M. Pišorn] |
UDK: | 004.89(043.2) |
COBISS: | 18546710 |
Št. ogledov: | 1878 |
Št. prenosov: | 108 |
Ocena: | 0 (0 glasov) |
Metapodatki: |
Sekundarni jezik: | Angleški jezik |
---|---|
Sekundarni naslov: | INDUCTIVE LEARNING FROM OBSERVATION |
Sekundarni povzetek: | In this diploma thesis we review learning from data using decision trees as a prediction model. We study the problem of overfitting and review common methods used to contain it. Ensemble learning is a concept in artificial intelligence that encompasses methods constructing a set of classifiers and classify new input data by taking a vote of their predictions. We review these methods and show why they often outperform single classifiers. We implement commonly used Adaboost algorithm and test its behavior, using decision trees as classifiers. |
Sekundarne ključne besede: | artificial intelligence;machine learning;decision trees;ensemble learning;Adaboost; |
URN: | URN:SI:UM: |
Vrsta dela (COBISS): | Diplomsko delo/naloga |
Komentar na gradivo: | Univ. v Mariboru, Fak. za elektrotehniko, računalništvo in informatiko, Računalništvo in informacijske tehnologije |
Strani: | 34 f. |
ID: | 8738923 |