Povzetek

In this chapter we give a geometric representation of ▫$H_{n}(B;{\mathbb L})$▫ classes, where ▫${\mathbb L}$▫ is the ▫$4$▫-periodic surgery spectrum, by establishing a relationship between the normal cobordism classes ▫${{\mathcal N}}^{H}_{n}(B,\partial)$▫ and the ▫$n$▫-th ▫${\mathbb L}$▫-homology of ▫$B$▫, representing the elements of ▫$H_{n}(B;{\mathbb L})$▫ by normal degree one maps with a reference map to ▫$B$▫. More precisely, we prove that for every ▫$n \ge 6$▫ and every finite complex ▫$B$▫, there exists a map ▫$\Gamma: H_n(B;{\mathbb L}) \longrightarrow {\mathcal N}^{H}_{n}(B,\partial)$▫.

Ključne besede

generalized manifolds;cell-like map;normal degree one map;Steenrod L-homology;Poincaré duality complex;periodic surgery spectrum L;geometric representation;L-homology classes;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.16 - Samostojni znanstveni sestavek ali poglavje v monografski publikaciji
Organizacija: UL PEF - Pedagoška fakulteta
UDK: 515.1
COBISS: 244030211 Povezava se bo odprla v novem oknu
Št. ogledov: 101
Št. prenosov: 31
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Neznan jezik
Vrsta dela (COBISS): Drugo
Strani: Str. 429-436
ID: 27306122