diplomsko delo

Povzetek

Hamiltonskost grafov

Ključne besede

hamiltonski grafi;

Podatki

Jezik: Slovenski jezik
Leto izida:
Izvor: Ljubljana
Tipologija: 2.11 - Diplomsko delo
Organizacija: UL PEF - Pedagoška fakulteta
Založnik: [M. Saksida]
UDK: 51(043.2)
COBISS: 9318985 Povezava se bo odprla v novem oknu
Št. ogledov: 1013
Št. prenosov: 273
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Angleški jezik
Sekundarni naslov: Hamiltonian graphs
Sekundarni povzetek: The diploma work discusses about graph characteristics called hamiltonicity. Some of the important necessary and sufficient conditions are presented which tell us when a graph is or is not Hamiltonian. Among sufficient conditions we recognize Pósa's theorem and its corollaries are Ore's theorem and Dirac's theorem. We also take a look at some families of graphs that are Hamiltonian and some that are not. In the end, we briefly consider the practical aspect of searching Hamiltonian cycles in graphs.
Sekundarne ključne besede: mathematics;matematika;
Vrsta datoteke: application/pdf
Vrsta dela (COBISS): Diplomsko delo
Komentar na gradivo: Univ. Ljubljana, Pedagoška fak., Matematika in računalništvo
Strani: VI, 55 str.
Vrsta dela (ePrints): thesis
Naslov (ePrints): Hamiltonian graphs
Ključne besede (ePrints): graf
Ključne besede (ePrints, sekundarni jezik): graph
Povzetek (ePrints): Diplomsko delo obravnava lastnost grafov imenovano hamiltonskost grafov. Predstavljeni so nekateri pomembni potrebni in zadostni pogoji, ki nam povejo, kdaj graf je oziroma ni hamiltonski. Med zadostnimi pogoji spoznamo Pósev izrek in pomembni posledici tega izreka, Orejev in Diracov izrek. Ogledamo si tudi nekaj družin grafov, ki so oziroma niso hamiltonski. Na koncu na kratko obravnavamo še uporabno stran iskanja hamiltonskih ciklov v grafih.
Povzetek (ePrints, sekundarni jezik): The diploma work discusses about graph characteristics called hamiltonicity. Some of the important necessary and sufficient conditions are presented which tell us when a graph is or is not Hamiltonian. Among sufficient conditions we recognize Pósa's theorem and its corollaries are Ore's theorem and Dirac's theorem. We also take a look at some families of graphs that are Hamiltonian and some that are not. In the end, we briefly consider the practical aspect of searching Hamiltonian cycles in graphs.
Ključne besede (ePrints, sekundarni jezik): graph
ID: 8310612
Priporočena dela:
, diplomsko delo
, diplomsko delo
, diplomsko delo
, magistrsko delo