magistrsko delo
Povzetek
Glavna tema magistrske naloge so popolnoma pozitivne matrike, ki so posebni primer pozitivno semidefinitnih matrik. Vsaka realna pozitivno semidefinitna matrika A se lahko zapiše kot A=BB^T, kjer je B realna matrika. V primeru, da je B nenegativna matrika, je matrika A popolnoma pozitivna. Na začetku predstavimo osnovne pojme in definicije realnih matrik, s poudarkom na pozitivno semidefinitnih matrikah. Podamo nekaj primerov in dokažemo osnovne lastnosti teh matrik. V nadaljevanju obravnavamo popolnoma pozitivne matrike. Definiramo Hadamardov in Kroneckerjev produkt ter dokažemo, da sta oba produkta popolnoma pozitivnih matrik popolnoma pozitivni matriki. Spoznamo eno izmed metod, s katero pokažemo, da je dvojno nenegativna matrika popolnoma pozitivna. Definiramo pojem konveksni stožec ter dokažemo, da je množica popolnoma pozitivnih matrik zaprt konveksni stožec. Na algebraični in geometrijski način dokažemo, da so t.i. majhne matrike popolnoma pozitivna. Nazadnje obravnavamo diagonalno dominantne matrike ter dokažemo, da so nenegativne simetrične diagonalno dominantne matrike popolnoma pozitivne. Prav tako definiramo primerjalno matriko in dokažemo, da je matrika A popolnoma pozitivna, če je simetrična nenegativna matrika ter je njena primerjalna matrika pozitivno semidefinitna.
Ključne besede
matrike;Hadamardov produkt;Kroneckerjev produkt;konveksni stožec;pozitivno semidefinitne matrike;popolnoma pozitivne matrike;primerjalne matrike;magistrska dela;
Podatki
Jezik: |
Slovenski jezik |
Leto izida: |
2014 |
Tipologija: |
2.09 - Magistrsko delo |
Organizacija: |
UM FNM - Fakulteta za naravoslovje in matematiko |
Založnik: |
[T. Lešnik] |
UDK: |
512.64(043.2) |
COBISS: |
20990984
|
Št. ogledov: |
1473 |
Št. prenosov: |
146 |
Ocena: |
0 (0 glasov) |
Metapodatki: |
|
Ostali podatki
Sekundarni jezik: |
Angleški jezik |
Sekundarni naslov: |
Completely positive matrices |
Sekundarni povzetek: |
The main topic of the master thesis are completely positive matrices, which are the special case of a positive semidefinite matrix. Every real positive semidefinite matrix A can be written in the form A=BB^T, where B is a real matrix. In the case of a nonnegative matrix B the matrix A is completely positive. The first chapter includes some basic terms and definitions of specific real matrices with an emphasis on positive semidefinite matrices. We present some examples and prove the basic properties of these matrices. In the next chapter we consider completely positive matrices. We define Hadamard and Kronecker product and show that both of these products of completely positive matrices are completely positive. We introduce one method which enables us to verify whether the doubly nonnegative matrix is completely positive. We define the concept of a convex cone and show that the set of all completely positive matrices is a closed convex cone. With algebraic and geometric approach we show that small matrices are completely positive. At the end of the thesis we treat diagonally dominant matrices and show that nonnegative symmetric diagonally dominant matrices are completely positive. We also define a comparison matrix and show that the matrix A is completely positive if it is a symmetric nonnegative matrix and if its comparison matrix is positive semidefinite. |
Sekundarne ključne besede: |
matrices;Hadamard product;Kronecker product;convex cone;positive semidefinite matrices;completely positive matrices;diagonally dominant matrix;master theses; |
URN: |
URN:SI:UM: |
Vrsta dela (COBISS): |
Magistrsko delo/naloga |
Komentar na gradivo: |
Univ. v Mariboru, Fak. za naravoslovje in matematiko, Oddelek za matematiko in računalništvo |
Strani: |
IX, 45 f. |
ID: |
8680583 |