Jezik: | Slovenski jezik |
---|---|
Leto izida: | 2016 |
Tipologija: | 2.09 - Magistrsko delo |
Organizacija: | UM FNM - Fakulteta za naravoslovje in matematiko |
Založnik: | [R. Rožič] |
UDK: | 517.9(043.2) |
COBISS: | 22190600 |
Št. ogledov: | 1107 |
Št. prenosov: | 100 |
Ocena: | 0 (0 glasov) |
Metapodatki: |
Sekundarni jezik: | Angleški jezik |
---|---|
Sekundarni naslov: | Darboux integrability of polynomial systems of ordinary differential equations |
Sekundarni povzetek: | In this master thesis we review some aspects of the Darboux integrability. In the first chapter we describe some basic notions of commutative algebra, which are needed for our study. In the second chapter we consider the theory of Darboux integrability for two-dimensional systems of ordinary differential equations. We describe the existence of Darboux first integrals and Darboux integrating factors depending on the number of invariant curves and then we present the calculation of invariant curves and using them the construction of Darboux first integrals and Darboux integrating factors. Then, using the described methods we find the Darboux first integral and the Darboux integrating factor for two systems inside of the family of two-dimensional systems of degree four. In the third chapter we describe the Darboux theory for n-dimensional systems and finally, in the last chapter we state an open question for planar polynomial vector fields and some applications of Darboux theory. |
Sekundarne ključne besede: | ideals;first integral;vector fields;differential equations;invariant curves;invariant hypersurfaces;Darboux first integral;Darboux integrating factor;master theses; |
URN: | URN:SI:UM: |
Vrsta dela (COBISS): | Magistrsko delo/naloga |
Komentar na gradivo: | Univ. v Mariboru, Fak. za naravoslovje in matematiko, Oddelek za matematiko in računalništvo |
Strani: | IX, 47 f. |
ID: | 9133623 |