diplomsko delo
Petra Čačkov (Avtor), Marko Slapar (Mentor)

Povzetek

Za boljše razumevnanje eliptičnih krivulj v uvodu definiramo projektivno ravnino in točke v neskončnosti, saj so te pomembne za njihovo obravnavo. Nato definiramo eliptične krivulje in predstavimo oblike v katerih jih lahko obravnavamo. Skozi celo diplomo jih v večini obravnavamo v Weierstrassovi obliki. Na eliptične krivulje lahko gledamo tudi kot množico na točk, ki rešijo enačbo za dano eliptično krivuljo. Ta množica točk, s točko v neskončnosti v kateri se sekajo vse premice vzporedne y osi, predstavlja abelovo grupo za seštevanje. V diplomi predstavimo grupno strukturo eliptičnih krivulj in definiramo seštevanje točk na njej. Ker pa se eliptične krivulje obnašajo različno, glede na to nad katerim obsegom jih obravnavamo, obravnavamo eliptične krivulje nad realnimi in racionalnimi števili ter nad končnim obsegom Z_p, kjer je p praštevilo. Obravnavamo jih tudi nad celimi števili, čeprav množica celih števil ni obseg, in množica točk, ki rešijo enačbo elliptične krivulje ni več grupa. Pri obravnavi eliptičnih krivulj nad realnimi števili se osredotočimo na iskanje ničel, med tem ko se v drugih primerih osredotočimo na iskanje in preštevanje točk, ki ležijo na dani eliptični krivulji.

Ključne besede

eliptične krivulje;Weierstrassova enačba;točka v neskončnosti;

Podatki

Jezik: Slovenski jezik
Leto izida:
Tipologija: 2.11 - Diplomsko delo
Organizacija: UL PEF - Pedagoška fakulteta
Založnik: [P. Čačkov]
UDK: 51(043.2)
COBISS: 11170377 Povezava se bo odprla v novem oknu
Št. ogledov: 870
Št. prenosov: 162
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Sekundarni jezik: Angleški jezik
Sekundarni naslov: Elliptic curves over different fields
Sekundarni povzetek: For better understanding of elliptic curves, we first define projective plane and points at infinity. Then we define elliptic curves and show some different forms of equations that represent them. Throughout the thesis, mostly we use Weierstrass form for elliptic curves, since every elliptic curve, with at least one point lying on it, can be transformed into it. We can look on elliptic curves as a set of points that solve the given equation of elliptic curve. That set of points, with point at infinity in which all lines parallel to y axis meet, represent an abelian group for adding points. Furthermore, we define the group structure of elliptic curves and adding points on them. As elliptic curves act differently depending on the field they are studied in, we discuss elliptic curves over real numbers, rational numbers and over finite field Z_p where p is a prime number. We also consider elliptic curves over integer numbers, even though a set of integer numbers is not a field and we cannot define a group structure with adding points, like we did before. When dealing with elliptic curves over real numbers, we focus on finding zeroes of elliptic curves while in other cases the focus on finding and counting points on elliptic curve.
Sekundarne ključne besede: mathematics;matematika;
Vrsta datoteke: application/pdf
Vrsta dela (COBISS): Diplomsko delo/naloga
Komentar na gradivo: Univ. v Ljubljani, Pedagoška fak., Dvopredmetni učitelj: matematika-fizika
Strani: 34 str.
ID: 9171009