delo diplomskega seminarja
Abstract
V svojem diplomskem delu sem raziskovala dinamični sistem preslikave, ki se imenuje Smaleova podkev. Le-ta je podana s preprostim predpisom, ki pravokotniku v ravnini priredi lik podkvaste oblike, vendar pa je njena dinamika izrazito kaotična. Natančneje, izkaže se, da je kaotična že njena skrčitev na del orbit, ki se začnejo v Cantorjevi podmnožici začetnega pravokotnika in in in jih opišemo s prostorom zaporedij (simbolično dinamiko). Smaleovo podkev sem uporabila tudi za raziskovanje pojava homoklinske zanke - trasverzalnega preseka stabilne in nestabilne mnogoterosti v planarnih dinamičnih sistemih.
Keywords
matematika;homoklinska zanka;kaotični sistem;podkvasta preslikava;stabilna mnogoterost;nestabilna mnogoterost;
Data
Language: |
Slovenian |
Year of publishing: |
2018 |
Typology: |
2.11 - Undergraduate Thesis |
Organization: |
UL FMF - Faculty of Mathematics and Physics |
Publisher: |
[M. Žilavec] |
UDC: |
517.9 |
COBISS: |
18436953
|
Views: |
559 |
Downloads: |
263 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
English |
Secondary title: |
Horseshoe map |
Secondary abstract: |
In my dissertation I have studied a discrete dynamic system given by a map, called the Smale Horseshoe map. The latter is determined by a simple rule, which tranforms a rectangle into a subtler shape and admits an extremely chaotic dynamic behaviour. More precisely, it turns out that this system is chaotic already when we restrict our attention to a part of orbits, which begin in a Cantor set of the initial rectangle and can be described with a space of sequences (symbolic dynamics). I used Smale's Horseshoe map also to explore an appearance of a homoclinic tangle - transversal intersection of the stable and unstable manifold. |
Secondary keywords: |
mathematics;homoclinic tangle;chaotic system;horseshoe map;stable manifold;unstable manifold; |
Type (COBISS): |
Final seminar paper |
Study programme: |
0 |
Thesis comment: |
Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za matematiko, Finančna matematika - 1. stopnja |
Pages: |
25 str. |
ID: |
10959920 |