magistrsko delo
Tamara Planinšek (Author), Polona Oblak (Mentor)

Abstract

V magistrskem delu preučujemo lastne vrednosti realnih simetričnih matrik. Zanima nas najmanjše možno število $q(G)$ različnih lastnih vrednosti vseh matrik, katerih ničelno-neničelni vzorec pripada vnaprej predpisanemu grafu $G$. Za različne družine grafov $G$ izračunamo $q(G)$. Pri tem si pogledamo tudi lastnosti spojev grafov ter kartezičnih, tenzorskih in krepkih produktov grafov. V posebnem nas zanimajo grafi $G$ na $n$ točkah, za katere velja $q(G)=1,2,n-1$ ali $n$.

Keywords

inverzni problem lastnih vrednosti;lastne vrednosti;minimalni rang;simetrične matrike;graf;kvadratne forme;

Data

Language: Slovenian
Year of publishing:
Typology: 2.09 - Master's Thesis
Organization: UL FRI - Faculty of Computer and Information Science
Publisher: [T. Planinšek]
UDC: 512.64
COBISS: 18457689 Link will open in a new window
Views: 773
Downloads: 212
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary title: Number of distinct eigenvalues of symmetric matrices
Secondary abstract: The aim of this work is to present the properties of eigenvalues of real symmetric matrices. We are interested in finding the minimum number of distinct eigenvalues $q(G)$ of all matrices whose zero-nonzero pattern belongs to a given graph $G$. For some families of graphs $G$ we calculate $q(G)$. We mention the properties of the join of two graphs and also Cartesian, tensor and strong products of graphs. In particular, we are interested in graphs $G$ on $n$ points, for which $q(G)=1,2, n-1$ or $n$.
Secondary keywords: inverse eigenvalue problem;eigenvalues;minimum rank;symmetric matrices;graph;quadratic form;
Type (COBISS): Master's thesis/paper
Study programme: 0
Thesis comment: Univ. v Ljubljani, Fak. za matematiko in fiziko, Oddelek za matematiko, Pedagoška matematika
Pages: X, 58 str.
ID: 10962342
Recommended works:
, magistrsko delo
, delo diplomskega seminarja