Maja Fošner (Author), Nina Peršin (Author)

Abstract

A classical result of Herstein asserts that any Jordan derivation on a prime ring of characteristic different from two is a derivation. It is our aim in this paper to prove the following result, which is in the spirit of Herstein's theorem. Let ▫$R$▫ be a prime ring with ▫$\text{char}(R) = 0$▫ or ▫$4 < \text{char}(R)$▫, and let ▫$D \colon R \to R$▫ be an additive mapping satisfying either the relation ▫$D(x^3) = D(x^2)x + x^2D(x)$▫ or the relation ▫$D(x^3) = D(x)x^2 + xD(x^2)$▫ for all ▫$x \in R$▫. In both cases ▫$D$▫ is a derivation.

Keywords

prakolobar;polprakolobar;odvajanje;jordansko odvajanje;jordansko trojno odvajanje;funkcijska identiteta;prime ring;semiprime ring;derivation;Jordan derivation;Jordan triple derivation;functional identity;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UM FL - Faculty of Logistics
UDC: 512.552
COBISS: 512501053 Link will open in a new window
ISSN: 0017-095X
Views: 1185
Downloads: 73
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
URN: URN:SI:UM:
Type (COBISS): Not categorized
Pages: str. 67-79
Volume: ǂVol. ǂ48
Issue: ǂno. ǂ1
Chronology: 2013
DOI: 10.3336/gm.48.1.06
ID: 1435831