Abstract
Naj bo ▫$R$▫ kolobar. Preslikava ▫$F: R \to R$▫ je komutirajoča na ▫$R$▫, če je ▫$[ F(x),x] = 0$▫ za vsak ▫$x \in R$▫. Glavni rezultat: naj bo ▫$R$▫ prakolobar s karakteristiko različno od dva. Denimo, da obstaja od nič različna derivacija ▫$D: R \to R$▫, pri kateri je preslikava ▫$x \mapsto [ D(x),x]$▫, komutirajoča na ▫$R$▫. V tem primeru je ▫$R$▫ komutativen.
Keywords
matematika;asociativni kolobarji in algebre;kolobar;prakolobar;odvajanje;jordansko odvajanje;notranje odvajanje;komutirajoča preslikava;centralizirajoča preslikava;mathematics;associative rings and algebras;prime ring;derivation;Jordan derivation;inner derivation;commuting mapping;centralizing mapping;
Data
Language: |
English |
Year of publishing: |
1990 |
Typology: |
1.01 - Original Scientific Article |
Organization: |
UM EPF - Faculty of Economics and Business |
UDC: |
512.552 |
COBISS: |
298524
|
ISSN: |
0002-9939 |
Views: |
921 |
Downloads: |
95 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
English |
Secondary title: |
Komutirajoča in centralizirajoča preslikava na prakolobarjih |
Secondary abstract: |
Let ▫$R$▫ be a ring. A mapping ▫$F: R \to R$▫ is said to be commuting on ▫$R$▫ if ▫$[F(x),x] = 0$▫ holds for all ▫$x \in R$▫. The main purpose of this paper is to prove the following result, which generalizes a classical result of E. Posner: Let ▫$R$▫ be a prime ring of characteristic not two. Suppose there exists a nonzero derivation ▫$D: R \to R$▫, such that the mapping ▫$x \mapsto [D(x),x]$▫ is commuting on ▫$R$▫. In this case ▫$R$▫ is commutative. |
URN: |
URN:SI:UM: |
Type (COBISS): |
Not categorized |
Pages: |
str. 47-52 |
Volume: |
ǂVol. ǂ109 |
Issue: |
ǂno. ǂ1 |
Chronology: |
1990 |
ID: |
1471745 |