Joso Vukman (Author)

Abstract

Naj bo ▫$R$▫ kolobar. Preslikava ▫$F: R \to R$▫ je komutirajoča na ▫$R$▫, če je ▫$[ F(x),x] = 0$▫ za vsak ▫$x \in R$▫. Glavni rezultat: naj bo ▫$R$▫ prakolobar s karakteristiko različno od dva. Denimo, da obstaja od nič različna derivacija ▫$D: R \to R$▫, pri kateri je preslikava ▫$x \mapsto [ D(x),x]$▫, komutirajoča na ▫$R$▫. V tem primeru je ▫$R$▫ komutativen.

Keywords

matematika;asociativni kolobarji in algebre;kolobar;prakolobar;odvajanje;jordansko odvajanje;notranje odvajanje;komutirajoča preslikava;centralizirajoča preslikava;mathematics;associative rings and algebras;prime ring;derivation;Jordan derivation;inner derivation;commuting mapping;centralizing mapping;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UM EPF - Faculty of Economics and Business
UDC: 512.552
COBISS: 298524 Link will open in a new window
ISSN: 0002-9939
Views: 921
Downloads: 95
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary title: Komutirajoča in centralizirajoča preslikava na prakolobarjih
Secondary abstract: Let ▫$R$▫ be a ring. A mapping ▫$F: R \to R$▫ is said to be commuting on ▫$R$▫ if ▫$[F(x),x] = 0$▫ holds for all ▫$x \in R$▫. The main purpose of this paper is to prove the following result, which generalizes a classical result of E. Posner: Let ▫$R$▫ be a prime ring of characteristic not two. Suppose there exists a nonzero derivation ▫$D: R \to R$▫, such that the mapping ▫$x \mapsto [D(x),x]$▫ is commuting on ▫$R$▫. In this case ▫$R$▫ is commutative.
URN: URN:SI:UM:
Type (COBISS): Not categorized
Pages: str. 47-52
Volume: ǂVol. ǂ109
Issue: ǂno. ǂ1
Chronology: 1990
ID: 1471745