Abstract
Naj bo ▫$R$▫ kolobar. Biaditivna simetrična preslikava ▫$D(.,.): R \times R \to R$▫ je simetrična biderivacija, če je za vsak ▫$y \in R$▫ preslikave ▫$x \mapsto D(x,y)$▫ derivacija. V članku sta dokazana dva rezultata o simetričnih biderivacijah na prakolobarjih. Prvi rezultat pravi naslednje: če sta ▫$D_1$▫ in ▫$D_2$▫ simetrični biderivaciji na prakolobarju s karakteristiko različno od dva in tri tako, da je ▫$D_1(x,x)D_2(x,x) = 0, \quad x \in R$▫, potem je ▫$D_1 = 0$▫ ali ▫$D_2 = 0$▫.
Keywords
matematika;asociativni kolobarji in algebre;kolobar;prakolobar;odvajanje;simetrično bi-odvajanje;ne zaključna dela;mathematics;associative rings and algebras;ring;prime ring;derivation;symmetric bi-derivation;
Data
Language: |
English |
Year of publishing: |
1990 |
Typology: |
1.01 - Original Scientific Article |
Organization: |
UM PEF - Faculty of Education |
UDC: |
512.552 |
COBISS: |
3081220
|
ISSN: |
0001-9054 |
Views: |
906 |
Downloads: |
29 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
Slovenian |
Secondary title: |
Dva rezultata o simetričnem odvajanju na prakolobarjih |
Secondary abstract: |
Let ▫$R$▫ be a ring. A bi-additive symmetric mapping ▫$D(.,.): R \times R \to R$▫ is called a symmetric bi-derivation if, for any fixed ▫$y \in R$▫, the mapping ▫$x \mapsto D(x,y)$▫ is a derivation. The purpose of this paper is to prove two results concerning symmetric bi-derivations on prime rings. The first result states that, if ▫$D_1$▫ and ▫$D_2$▫ are symmetric bi-derivations on a prime ring of characteristic different from two and three such that ▫$D_1(x,x)D_2(x,x) = 0$▫ holds for all ▫$x \in R$▫, then either ▫$D_1 = 0$▫ or ▫$D_2 = 0$▫. The second result proves that the existence of a nonzero symmetric bi-derivation on a prime ring of characteristic different from two and three, such that ▫$[[D(x,x),x],x] \in Z(R)$▫ holds for all ▫$x \in R$▫, where ▫$Z(R)$▫ denotes the center of ▫$R$▫, forces ▫$R$▫ to be commutative. |
URN: |
URN:SI:UM: |
Type (COBISS): |
Article |
Pages: |
str. 181-189 |
Volume: |
ǂVol. ǂ40 |
Issue: |
ǂiss. ǂ1 |
Chronology: |
1990 |
DOI: |
10.1007/BF02112294 |
ID: |
1471798 |