Joso Vukman (Author)

Abstract

Naj bo ▫$R$▫ kolobar. Biaditivna simetrična preslikava ▫$D(.,.): R \times R \to R$▫ je simetrična biderivacija, če je za vsak ▫$y \in R$▫ preslikave ▫$x \mapsto D(x,y)$▫ derivacija. V članku sta dokazana dva rezultata o simetričnih biderivacijah na prakolobarjih. Prvi rezultat pravi naslednje: če sta ▫$D_1$▫ in ▫$D_2$▫ simetrični biderivaciji na prakolobarju s karakteristiko različno od dva in tri tako, da je ▫$D_1(x,x)D_2(x,x) = 0, \quad x \in R$▫, potem je ▫$D_1 = 0$▫ ali ▫$D_2 = 0$▫.

Keywords

matematika;asociativni kolobarji in algebre;kolobar;prakolobar;odvajanje;simetrično bi-odvajanje;ne zaključna dela;mathematics;associative rings and algebras;ring;prime ring;derivation;symmetric bi-derivation;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UM PEF - Faculty of Education
UDC: 512.552
COBISS: 3081220 Link will open in a new window
ISSN: 0001-9054
Views: 906
Downloads: 29
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: Slovenian
Secondary title: Dva rezultata o simetričnem odvajanju na prakolobarjih
Secondary abstract: Let ▫$R$▫ be a ring. A bi-additive symmetric mapping ▫$D(.,.): R \times R \to R$▫ is called a symmetric bi-derivation if, for any fixed ▫$y \in R$▫, the mapping ▫$x \mapsto D(x,y)$▫ is a derivation. The purpose of this paper is to prove two results concerning symmetric bi-derivations on prime rings. The first result states that, if ▫$D_1$▫ and ▫$D_2$▫ are symmetric bi-derivations on a prime ring of characteristic different from two and three such that ▫$D_1(x,x)D_2(x,x) = 0$▫ holds for all ▫$x \in R$▫, then either ▫$D_1 = 0$▫ or ▫$D_2 = 0$▫. The second result proves that the existence of a nonzero symmetric bi-derivation on a prime ring of characteristic different from two and three, such that ▫$[[D(x,x),x],x] \in Z(R)$▫ holds for all ▫$x \in R$▫, where ▫$Z(R)$▫ denotes the center of ▫$R$▫, forces ▫$R$▫ to be commutative.
URN: URN:SI:UM:
Type (COBISS): Article
Pages: str. 181-189
Volume: ǂVol. ǂ40
Issue: ǂiss. ǂ1
Chronology: 1990
DOI: 10.1007/BF02112294
ID: 1471798