Abstract

Naj bo ▫${\mathcal{T}}_{n}\left( \mathcal{C} \right)$▫ algebra vseh ▫$n \times n$▫ zgornje trikotnih matrik nad komutativnim kolobarjem ▫$\mathcal{C}$▫ z enoto. V članku je opisna struktura jordanskih homomorfizmov, ki slikajo iz algebre ▫${\mathcal{T}}_{n} \left( \mathcal{C} \right)$▫ v poljubno algebro nad kolobarjem ▫$\mathcal{C}$▫. Kot aplikacija je predstavljen nov dokaz rezultata, da je vsako jordansko odvajanje iz algebre ▫${\mathcal{T}}_{n} \left( \mathcal{C} \right)$▫ v ▫${\mathcal{T}}_{n} \left( \mathcal{C} \right)$▫-bimodul vsota odvajanja in antiodvajanja.

Keywords

matematika;algebra zgornje trikotnih matrik;jordanski homomorfizem;jordansko odvajanje;ne zaključna dela;mathematics;triangular matrix algebra;Jordan homomorphism;Jordan derivation;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UM PEF - Faculty of Education
UDC: 512.5/.6
COBISS: 13704281 Link will open in a new window
ISSN: 0308-1087
Views: 48
Downloads: 7
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: Slovenian
Secondary title: Jordanski homomorfizmi na trikotnih matrikah
Secondary abstract: Let ▫${\mathcal{T}}_n(\mathcal{C})$▫ be the algebra of all ▫$n \times n$▫ upper triangular matrices over a commutative unital ring ▫$\mathcal{C}$▫. We describe the structure of Jordan homomorphisms from ▫${\mathcal{T}}_n(\mathcal{C})$▫ into an arbitrary algebra over ▫$\mathcal{C}$▫. As an application a new proof of our recent result on Jordan derivations on ▫${\mathcal{T}}_n(\mathcal{C})$▫ is obtained.
Secondary keywords: Algebra;
URN: URN:SI:UM:
Type (COBISS): Not categorized
Pages: str. 345-356
Volume: ǂVol. ǂ53
Issue: ǂno. ǂ5
Chronology: 2005
DOI: 10.1080/03081080500054745
ID: 1472525
Recommended works:
, no subtitle data available
, no subtitle data available
, no subtitle data available
, no subtitle data available