separating easily solvable and challenging problem instances
Ana Nikolikj (Author), Sašo Džeroski (Author), Mario Andrés Muñoz (Author), Carola Doerr (Author), Peter Korošec (Author), Tome Eftimov (Author)

Abstract

No abstract data available

Keywords

black-box optimization;algorithms;problem instances;machine learning;

Data

Language: English
Year of publishing:
Typology: 1.08 - Published Scientific Conference Contribution
Organization: IJS - Jožef Stefan Institute
Publisher: ACM
UDC: 004.8
COBISS: 162950147 Link will open in a new window
Views: 5
Downloads: 2
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: Slovenian
Secondary title: Algorithm instance footprint: separating easily solvable and challenging problem instances
Secondary keywords: Strojno učenje;Računalniški algoritmi;
Source comment: Nasl. z nasl. zaslona; Soavtorji iz Slovenije: Sašo Džeroski, Peter Korošec, Tome Eftimov; Opis vira z dne 1. 9. 2023;
Pages: Str. 529-537
DOI: 10.1145/3583131.3590424
ID: 19933591
Recommended works:
, separating easily solvable and challenging problem instances
, trajectory-based population dynamics for classification of black-box optimization problems