magistrsko delo
Abstract
V magistrskem delu s pomočjo Weierstrassovega izreka pokažemo, da lahko vsako celo funkcijo predstavimo kot produkt, iz katerega lahko razberemo ničle funkcije. Prav tako lahko za poljubno zaporedje brez stekališč skonstruiramo holomorfno funkcijo, ki ima ničle vnaprej predpisanih stopenj natanko v točkah iz zaporedja. V nadaljevanju predstavimo Mittag-Lefflerjev izrek, ki nam podobno pove, da lahko skonstruiramo meromorfno funkcijo, ki ima v točkah poljubnega zaporedja brez ponavljanja in brez stekališč vnaprej predpisane končne glavne dele Laurentovega razvoja funkcije. Za konec pa uporabnost dokazanih izrekov pokažemo še na konkretnih primerih.
Keywords
holomorfna funkcija;neskončni produkt;Rungejev izrek;ničle;konvergentnost;faktorizacija;meromorfna funkcija;cela funkcija;
Data
Language: |
Slovenian |
Year of publishing: |
2015 |
Typology: |
2.09 - Master's Thesis |
Organization: |
UL PEF - Faculty of Education |
Publisher: |
[N. Petelin] |
UDC: |
51(043.2) |
COBISS: |
10726985
|
Views: |
950 |
Downloads: |
159 |
Average score: |
0 (0 votes) |
Metadata: |
|
Other data
Secondary language: |
English |
Secondary title: |
Weierstrass theorem and Mittag-Leffler's theorem |
Secondary abstract: |
In these thesis we show, using the Weierstrass theorem, that every entire function can be represented as a product of functions, from which we can easily identify zeros of the function. We also show that for any given sequence without accumulation points, we can construct a holomorphic functions with zeros of prescribed order at exactly the points in the sequence. Next we present Mittag-Leffler's theorem, that similarly shows that, for any sequence without repetitions and without accumulation points, we can construct meromorphic functions that have prescribed finite principle Laurent parts at exactly the points in the sequence. In the end, we show the usefulness of proved theorems on concrete examples. |
Secondary keywords: |
mathematics;matematika; |
File type: |
application/pdf |
Type (COBISS): |
Master's thesis/paper |
Thesis comment: |
Univ. v Ljubljani, Pedagoška fak., Poučevanje: Predmetno poučevanje, Matematika in Računalništvo |
Pages: |
45 str. |
ID: |
9055936 |