diplomsko delo
Abstract
Kvaternione lahko predstavimo na različne načine: kot pare kompleksnih števil, s pomočjo vektorjev, s pomočjo 2 × 2 kompleksne matrike in s pomočjo 4 × 4 realne matrike.
Rotacijo v prostoru predstavimo kot operator, ki ustreza produktu treh kvaternionov - rotacij okoli koordinatnih osi, ki jim pravimo Eulerjevi koti.
Keywords
čisti kvaternion;enotni kvaternion;operator rotacije;operator vrtenja;precesijski kot;nutacijski kot;kot zasuka;
Data
| Language: |
Slovenian |
| Year of publishing: |
2016 |
| Typology: |
2.11 - Undergraduate Thesis |
| Organization: |
UL PEF - Faculty of Education |
| Publisher: |
[T. Lah] |
| UDC: |
51(043.2) |
| COBISS: |
11339337
|
| Views: |
2560 |
| Downloads: |
311 |
| Average score: |
0 (0 votes) |
| Metadata: |
|
Other data
| Secondary language: |
English |
| Secondary title: |
Quaternions and Euler angles |
| Secondary abstract: |
Quaternions are presented in various ways: as pairs of complex numbers, using vectors, as 2 × 2-dimensional complex matrices, or 4 × 4-dimensional real matrices.
Space rotation is presented as an operator which is a product of three quaternions -- elemental rotations around coordinate axes, known as Euler angles. |
| Secondary keywords: |
mathematics;matematika; |
| File type: |
application/pdf |
| Type (COBISS): |
Undergraduate thesis |
| Thesis comment: |
Univ. v Ljubljani, Pedagoška fak., Fak. za matematiko in fiziko, Matematika in fizika |
| Pages: |
53 str. |
| ID: |
9228550 |