Joso Vukman (Author)

Abstract

The purpose of this paper is to prove the following result. Let ▫$ m\geq\ge 1$▫, ▫$n \geq\ge 1$▫ be some fixed integers with ▫$m \ne n$▫, and let R be a prime ring with ▫$char (R) \ne 2mn (m+n) l, \vert m-n l, \vert$▫. Suppose there exists a nonzero additive mapping ▫$D : R \to R$▫ satisfying the relation ▫$(m + n)D(x^2) = 2mD(x)x + 2nxD(x)$▫ for all ▫$x \in R ((m,n)-Jordan derivation)$▫. If either ▫$char(R) = 0$▫ or ▫$char(R) \geq 3$▫ then D is a derivation and R is commutative.

Keywords

matematika;odvodi;kolobarji;jordanska odvajanja;prime rings;derivation;Jordan derivation;commutativity;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UM FNM - Faculty of Natural Sciences and Mathematics
UDC: 517.2
COBISS: 16481032 Link will open in a new window
ISSN: 0420-1213
Views: 737
Downloads: 403
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: Slovenian
Secondary keywords: matematika;odvodi;kolobarji;jordanska odvajanja;
URN: URN:SI:UM:
Type (COBISS): Scientific work
Pages: str. 773-778
Volume: ǂVol. ǂ41
Issue: ǂno. ǂ4
Chronology: 2008
ID: 9595927