Povzetek

We consider a parametric nonlinear nonhomogeneous elliptic equation, driven by the sum of two differential operators having different structure. The associated energy functional has unbalanced growth and we do not impose any global growth conditions to the reaction term, whose behavior is prescribed only near the origin. Using truncation and comparison techniques and Morse theory, we show that the problem has multiple solutions in the case of high perturbations. We also show that if a symmetry condition is imposed to the reaction term, then we can generate a sequence of distinct nodal solutions with smaller and smaller energies.

Ključne besede

double-phase problem;nonlinear maximum principle;nonlinear regularity theory;critical point theory;critical groups;

Podatki

Jezik: Angleški jezik
Leto izida:
Tipologija: 1.01 - Izvirni znanstveni članek
Organizacija: UL FMF - Fakulteta za matematiko in fiziko
UDK: 517.956.2
COBISS: 18409561 Povezava se bo odprla v novem oknu
ISSN: 0044-2275
Št. ogledov: 519
Št. prenosov: 293
Ocena: 0 (0 glasov)
Metapodatki: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Ostali podatki

Vrsta dela (COBISS): Članek v reviji
Strani: art. 108 (21 str.)
Letnik: ǂVol. ǂ69
Zvezek: ǂiss. ǂ4
Čas izdaje: Aug. 2018
DOI: 10.1007/s00033-018-1001-2
ID: 11206832