magistrsko delo
Povzetek
Napovedovanje proizvodnje električne energije iz obnovljivih virov energije je postalo ključnega pomena, to namreč upravljavcem omrežja omogoča, da lažje predvidijo in uravnotežijo proizvodnjo in porabo električne energije. Zanesljiva napoved se koristno izraža v optimizaciji dispečiranja svojih nadzorovanih enot, v stabilnosti omrežja, kot tudi sprejemanju odločitev o nakupu in prodaji električne energije na energetskih trgih in tako pripomorejo h večjim dobičkom.
Magistrsko delo obravnava možnosti izdelave prediktivnih modelov proizvodnje sončne elektrarne na podlagi vremenskih podatkov, s pomočjo drevesnega regresijskega modela strojnega učenja ter PVLIB orodja, ki z svojimi matematičnimi modeli služi za simulacijo delovanja fotovoltaičnih energetskih sistemov kot dobra referenca. Delo na koncu rezultata obeh metod primerja in izpostavi prednosti ter slabosti vsakega izmed njiju. Cilj je namreč, da z izdelavo strojno učenega modela dosežemo oprijemljive rezultate in natančnost primerljivo referenčnemu matematičnem PVLIB modelu. Poleg tega delo preuči orodja in uporabljene metode, relevantnost virov vhodnih vremenskih podatkov v sklopu analiz, kot tudi optimizacijske algoritme, ter na podlagi primera iz prakse dokaže kako lahko strojno učenje pripomore ekspertu pri ročnih napovedih.
Ključne besede
napoved proizvodnje energije;strojno učenje;odločitvena drevesa;fotovoltaika;sončno sevanje;regresijski model;mlflow;optimizacija;pvlib;Prešernove nagrade;magisteriji;
Podatki
Jezik: |
Slovenski jezik |
Leto izida: |
2023 |
Tipologija: |
2.09 - Magistrsko delo |
Organizacija: |
UL FE - Fakulteta za elektrotehniko |
Založnik: |
[J. Močnik] |
UDK: |
621.383.51(043.3) |
COBISS: |
165461507
|
Št. ogledov: |
647 |
Št. prenosov: |
196 |
Ocena: |
0 (0 glasov) |
Metapodatki: |
|
Ostali podatki
Sekundarni jezik: |
Angleški jezik |
Sekundarni naslov: |
Short-term forecasting of photovoltaic power plant production |
Sekundarni povzetek: |
Forecasting the production of electricity from renewable energy sources has become crucial, namely it enables network operators to more easily predict and balance the production and consumption of electricity. A reliable forecast is beneficial in the optimization of the dispatching of its controlled units, in the stability of the network, as well as in making decisions about the purchase and sale of electricity on the energy markets, thus contributing to greater profits.
The master's thesis deals with the possibilities of creating predictive models of solar power plant production based on weather data, with the help of a machine learning tree regression model and the PVLIB tool, which with its mathematical models serves as a good reference for simulating the operation of photovoltaic energy systems. The work at the end of the result compares the two and highlights the strengths and weaknesses of each of them. Namely, the goal is to achieve tangible results and accuracy comparable to the reference mathematical PVLIB model by creating a machine-learned model. In addition, the thesis examines the tools and methods used, the relevance of input weather data sources in the analysis, as well as optimization algorithms. Furthermore, through a practical case study, it demonstrates how machine learning can assist experts in manual forecasting, showcasing the benefits and contributions of leveraging machine learning techniques. |
Sekundarne ključne besede: |
energy production forecast;machine learning;decision trees;photovoltaics;solar radiation;regression model;mlflow;optimization;pvlib; |
Vrsta dela (COBISS): |
Magistrsko delo/naloga |
Študijski program: |
1000316 |
Konec prepovedi (OpenAIRE): |
1970-01-01 |
Komentar na gradivo: |
Univ. v Ljubljani, Fak. za elektrotehniko |
Komentar vira: |
Prešernova nagrada, FE UL, 2023 |
Strani: |
XXII, 109 str. |
ID: |
19872237 |