Maja Fošner (Author), Joso Vukman (Author)

Abstract

In this paper we prove the following result. Let ▫$m \ge 0$▫ and ▫$n\ge 0$▫ be integers with ▫$m+n \ne 0$▫ and let ▫$R$▫ be a prime ring with ▫$char(R)=0$▫ or ▫$m+n+1 \le char(R) \ne 2$▫. Suppose there exists a nonzero additive mapping ▫$D:R \to R$▫ satisfying the relation ▫$D(x^{m+n+1}) = (m+n+1)x^m D(x)x^n$▫ for all ▫$x \in R$▫. In this case ▫$D$▫ is a derivation and ▫$R$▫ is commutative.

Keywords

matematika;prakolobar;funkcijska identiteta;odvajanje;mathematics;prime ring;functional identity;derivation;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UM FNM - Faculty of Natural Sciences and Mathematics
UDC: 512.552
COBISS: 18432520 Link will open in a new window
ISSN: 0017-095X
Views: 407
Downloads: 25
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
URN: URN:SI:UM:
Type (COBISS): Not categorized
Pages: str. 31-41
Volume: Vol. 46
Issue: no. 1
Chronology: 2011
ID: 1477039
Recommended works:
, no subtitle data available
, no subtitle data available
, no subtitle data available
, no subtitle data available