Maja Fošner (Author), Joso Vukman (Author)

Abstract

The purpose of this paper is to prove the following result. Let ▫$m, n \ge 1$▫ be some fixed integers with ▫$m \ne n$▫, and let ▫$R$▫ be a prime ring with ▫$(m+n)^2 < \text{char} (R)$▫. Suppose a nonzero additive mapping ▫$D : R \to R$▫ exists satisfying the relation ▫$(m+n)^2 D(x^3) = m(3m+n) D(x)x^2 + 4mnxD(x)x + n(3n+m)x^2 D(x)$▫ for all ▫$x \in R$▫. In this case ▫$D$▫ is a derivation and ▫$R$▫ is commutative.

Keywords

matematika;prakolobar;polprakolobar;odvajanje;jordansko odvajanje;levo odvajanje;mathematics;prime ring;semiprime ring;derivation;Jordan derivation;left dderivation;left Jordan derivation;(m, n)-Jordan drivation;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UM FNM - Faculty of Natural Sciences and Mathematics
UDC: 512.552.3
COBISS: 19371016 Link will open in a new window
ISSN: 0035-7596
Views: 354
Downloads: 28
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
URN: URN:SI:UM:
Type (COBISS): Not categorized
Pages: str. 1153-1168
Volume: Vol. 42
Issue: no. 4
Chronology: 2012
ID: 1477046