Petar Pavešić (Author)

Abstract

V delu obravnavamo sklenjene mnogoterosti, ki imajo topološko kompleksnost največ ▫$3$▫ in karakteriziramo njihove kohomološke kolobarje. Za nekatere od dopustnih kohomoloških kolobarjev podamo tudi pripadajoče mnogoterosti do homeomorfizma natančno.

Keywords

topological complexity;Lusternik–Schnirelmann category;closed manifold;zero-divisor cup length;

Data

Language: English
Year of publishing:
Typology: 1.01 - Original Scientific Article
Organization: UL FMF - Faculty of Mathematics and Physics
UDC: 515.1
COBISS: 206513667 Link will open in a new window
ISSN: 1472-2747
Views: 1024
Downloads: 70
Average score: 0 (0 votes)
Metadata: JSON JSON-RDF JSON-LD TURTLE N-TRIPLES XML RDFA MICRODATA DC-XML DC-RDF RDF

Other data

Secondary language: English
Secondary title: Mnogoterosti, ki imajo nizko topološko kompleksnost
Secondary abstract: We study closed orientable manifolds whose topological complexity is at most ▫$3$▫ and determine their cohomology rings. For some of the admissible cohomology rings we are also able to identify corresponding manifolds up to a homeomorphism.
Type (COBISS): Article
Pages: str. 1713-1723
Volume: ǂVol. ǂ24
Issue: ǂiss. ǂ3
Chronology: 2024
DOI: 10.2140/agt.2024.24.1713
ID: 24920779
Recommended works:
, no subtitle data available
, no subtitle data available
, delo diplomskega seminarja